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Geometry optimization of transition state structures (first order saddle points) has proven
to be a challenging problem in theoretical chemistry. Despite many attempts, no method
has been developed that can guarantee convergence to a transition structure. The well-known
method of genetic algorithms (GA’s) was adapted for this problem, and designed to seek points
on a potential energy surface with a zero gradient norm and one negative eigenvalue in the
Hessian. A description of genetic algorithms and the software written to optimize first order
saddle points is given. The software developed was tested on a mathematical function having
minima, maxima, and first order saddle points. The method was capable of finding all of the
saddle points, as the results presented demonstrate. Optimization of various transition state
structures was then attempted. Although the current genetic algorithm software requires long
run times, the algorithm will preferentially seek first order saddle points, weeding out any
other stationary points. Thus, the initial guess at the optimum is not as critical as with other
methods, and as well, multiple saddle points can be found.
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1. Introduction

Geometry optimization of chemical structures has long been an issue in theoretical
chemistry. In particular, transition state structures, which are energy maxima along the
minimum energy path connecting reactants and products in a chemical reaction, have
posed fundamental difficulties. A computational approach for optimizing such struc-
tures is important since they have a fleeting existence and are therefore impossible to
isolate experimentally. Various approaches exist for optimizing transition state struc-
tures, but no methods exist that can guarantee convergence to a transition state structure.
For example, methods such as Broyden–Fletcher–Goldfarb–Shanno (BFGS) [1–4], and
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Optimally Conditioned (OC) [5] by Davidon are specifically designed to locate min-
ima since the force constant matrix (Hessian) is forced to remain positive definite. In
addition, most of these methods require “chemical intuition” in the form of a good ini-
tial guess to achieve convergence to a transition state structure. A method developed
recently by Anglada et al. [6] called Transition-State-BFGS (TS-BFGS) was designed
specifically for optimizing transition state structures. However, this method requires a
good initial structure, as well as a good initial Hessian. This paper explores the use of the
well known technique of genetic algorithms [7] to optimize the geometry of transition
state structures [8].

Genetic algorithms are a type of evolutionary computing used in many disciplines
for optimization problems. Genetic algorithms probabilistically search the problem’s
solution space by manipulating a population of possible solutions (individuals). Each
individual consists of a string of binary bits, known as a chromosome, which encode
its values of the problem variables. Genetic algorithms evolve better solutions to the
problem being solved by applying various genetic operators to parents selected from
the population. These operators combine and mix the genetic information (bits) of the
parents to form offspring. The goal is to create offspring which are more fit than the
parents. The fitnessof an individual is a numerical value representing how well its
variable values solves the problem. Simulation of reproduction via the application of
genetic operators such as crossover and mutation continues for a number of generations,
until a convergence criteria is satisfied.

Previous use of genetic algorithms for chemical structures include energy mini-
mization of molecular clusters by Mentres and Scuseria [9], as well as various confor-
mational searches [10–12]. A review of the use of genetic algorithms in chemistry was
written by Judson [13].

2. Chemical features

The critical points on a general surface include minima, maxima, and saddle points
of various order. All of these points are characterized by a zero gradient but are dis-
tinguishable by the number of negative eigenvalues of the second derivative matrix
(Hessian). For chemical reactions, different structures represent points on a potential
energy surface, where the coordinates are the bond lengths, bond angles, and dihedral
angles. On this surface, minima represent the reactants, products, and intermediates in
the reaction. First order saddle points represent transition state structures, and higher
order saddle points are of no chemical interest. Thus, when looking for transition state
structures we are interested in points with a zero gradient and one negative eigenvalue
in the Hessian matrix. The construction of a genetic algorithm for a particular problem
requires problem specific information, used to bias the evolution toward the desired op-
tima. Thus, the known characteristics of first order saddle points will be used for this
purpose.
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3. Implementation of genetic algorithms

Similar to other geometry optimization methods, the genetic algorithm imple-
mented begins with an initial approximation of the optimum structure sought. The en-
coded variables are the internal Z-matrix coordinates of the structure, bond lengths,
bond angles, and dihedral angles (torsions). Since this data is in real number space,
an encoding scheme is required to convert these real numbers into binary strings. Two
encoding schemes were used. The simplest was multiplicative encoding where each
variable was multiplied by 10accuracywhere accuracyis the number of accurate decimal
places required in the optimum. We chose a value of 6. The value resulting from the
multiplication was truncated to an integer and the binary representation of this integer
was used as the encoded variable. The binary strings of each of the variables were then
concatenated to form a longer binary string which formed the individual’s chromosome.
A more common encoding scheme which was also used is interval (or range) encoding.
A domain [ai, bi] is specified for each of the problem variables. The number of bits, nb,
used to represent each variable is chosen to divide the domain up into 2nb − 1 intervals.
The integer representation of each variable xi is given by

D = xi − ai

bi − ai

(
2nb − 1

)
(1)

The binary representation of the resulting integer is used as the encoded variable and the
binary strings of each variable are concatenated as before.

In addition to these encoding schemes, Gray encoding was also implemented. Gray
encoding is an alternative to standard binary and has the feature that the Hamming dis-
tance is constant. That is, consecutive integers encoded in Gray differ by only one bit
flip.

The initial population of individuals (of size µ) was generated by adding small
random perturbations to the initial approximation in the case of multiplicative encoding.
These perturbations were restricted to a user defined region. For the interval encoding
case, individuals were generated randomly and mapped to lie within specified intervals,
with the initial guess included in the population unmodified.

The genetic operators act on the encoded bit strings of the individuals, whereas
the fitness evaluation uses the real valued data to assign numerical fitness values. The
variables are decoded by reversing the procedure used to encode them, and a problem
dependent fitness function is evaluated for the variable set. Since the fitness function
is the mechanism for directing the evolution towards the desired objective, it generally
incorporates any a priori knowledge of the optimum sought. For finding a first order
saddle point, the defining characteristics of the optimum are a zero gradient length and
a Hessian matrix with one negative eigenvalue. Therefore, the fitness function used
was

f = 1

‖�g‖ + ε
· 1

(n− 1)+ ε
(2)
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where ‖�g‖ is the L2-norm of the gradient vector divided by
√

k (where k is the
number of variables), n is the number of negative eigenvalues of the Hessian ma-
trix, and ε was chosen small to prevent division by zero. As a result of applying
this fitness function, individuals close to a first order saddle point will have large
fitness values and, hence, will dominate the evolution after a number of genera-
tions.

Following the assignment of fitness values to all of the individuals in the initial
population the reproduction process of selecting parents, and applying the genetic repro-
duction operators begins. Various methods exist for selecting parents, all of which bias
the more fit individuals in some way. Two of these methods that were implemented are
roulette wheelselection, and tournamentselection. Roulette wheel selection is equiva-
lent to assigning individuals a slice of a circle with the size of the piece proportional to
that individual’s fitness value. A random number is generated and the individual whose
slice this number falls in, is chosen as a parent. Therefore, the more fit individuals are
more likely to be chosen. Tournament selection involves randomly selecting a number
of individuals to take part in a tournament. The individual in this pool with the highest
fitness is chosen as a parent. As a result, the larger the tournament size the more likely
that an individual with a high fitness value will be chosen. The tournament size (tsize) is
variable and the user can specify a probability (tprob) with which to choose the individual
with the highest fitness. If this probability condition is not satisfied a random individual
is chosen from the current tournament pool.

The genetic operators used include crossover and mutation. Crossover is a means to
generate better individuals than those present in the previous generation. Two parents are
selected as above, their chromosomes are aligned and a random crossover point is cho-
sen. The bit strings are then crossed by exchanging the bits to the right of the crossover
point, forming two offspring. This type of crossover is called single-point crossoverand
is performed with a user defined probability, pc. Mutation is used to maintain diversity
in the population. Each bit of each individual is examined for mutation, and is flipped
with a user defined probability, pm.

Following the reproduction stage the fitnesses of the offspring are evaluated and
the generation is complete. Individuals are now chosen to take part in the next gen-
eration. This surviving population can consist of all of the offspring produced, or can
be a combination of offspring and parents. In the latter case, the best individual from
the previous generation is added to the surviving population; this is called elitism. The
surviving population proceeds to the reproduction stage as before. This cycle continues
until convergence is achieved, at which point the algorithm terminates and reports the
optimum found.

Convergence criteria can very widely between GA implementations. A maximum
number of generation (Gmax) can be performed, after which convergence is assumed,
and the best individual found is reported. Another possibility is to place a tolerance on
the gradient norm such that the algorithm evolves until n = 1 and ‖�g‖ < δ where δ is
user specified.
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4. The software

The current implementation of the genetic algorithm includes several input para-
meters used in the setup and operation of the algorithm, many of which were mentioned
in the previous section. These parameters are summarized in table 1. The parameters
Minit and Msub are used with the multiplicative encoding scheme to ensure that individ-
uals representing physically infeasible solutions are not included in the population. For
the generation of the initial population, all individuals are within Minit of the initial guess
provided. Individuals in all subsequent generations are restricted to within Msub of this
initial guess.

The method for forming the surviving population that consists of both parents and
offspring involves creating a pool of individuals whose fitness values are above the av-
erage fitness. If this pool has enough individuals (greater than or equal to µ) then a
random selection of individuals is used. Otherwise, all are copied and the remainder
of the surviving population consists of individuals created by mutating those that are
already present.

Finally, λtol is a tolerance that is placed on the value of the negative eigenvalues,
below which they must lie to be counted as negative. This parameter is required due
to finite machine precision which can cause values that are essentially zero to be very
small, and maybe negative.

5. Mathematical results

As a means of testing the algorithm implemented, the following mathematical
function presented in Chong and Zak [14] for function minimization via genetic algo-

Table 1
Input parameters required in the current implementation of a genetic algorithm.

Variable Description

x0, y0 initial guess at the optimum
µ number of individuals in the population
Gmax maximum number of generations to perform
pc probability of performing crossover
pm probability of performing mutation
nb number of bits used to encode each variable
Minit maximum perturbation used to form initial population
Msub maximum amount by which any subsequent individuals can deviate from the initial guess
S method used for selecting parents (roulette-wheel (‘r’) or tournament (‘t’))
tsize number of individuals to take part in a tournament
tprob probability of selecting the best individual from the current tournament
E method of encoding (multiplicative (‘m’) or interval (‘i’))
B binary representation (standard (‘b’) or gray (‘g’))
R method used to choose individuals for the next generation

(all offspring (‘o’) or combination of offspring and parents (‘a’))
λtol how negative an eigenvalue must be before it is considered negative



394 S.D. Bungay et al. / Optimization of transition state structures using GAs

rithms was used:

f (x, y) = 3(1− x)2e−x2−(y+1)2 − 10
(x

2
− x3 − y4

)
e−x2−y2 − e−(x+1)2−y2

3
, (3)

where the encoded variables are the independent variables x and y of the function. This
function contains two minima, three maxima, and three saddle points, as shown in the
contour plot in figure 1. The precise locations and characteristics of these stationary
points are given in table 2.

By systematically testing different values of the algorithm parameters and averag-
ing the results from 25 runs of the code, the following parameter values were determined
to give the best results: µ = 100, Gmax = 100, pc = 0.75, pm = 0.03, S = ‘t’, tsize = 6,
tprob = 0.75, E = ‘r’, B = ‘g’, R = ‘a’, λtol = −5.0. Note that since range encoding
was determined to be the best, the parameters Minit and Msub were not required since
variable values are restricted to the specified intervals by the design of interval encod-
ing. Also, the use of interval encoding encourages choosing nb to be large, since a larger
value results in greater precision. For the current implementation the maximum allowed
value of nb = 31 was chosen. The value λtol was chosen to concentrate the search within
the interesting region of the surface.

Figure 1. Contour plot of equation (3) showing minima (m), maxima (M), and saddle points (x)
(see table 2).
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Table 2
Location and characteristics of stationary points for the test function (3). (x, y) is the coordinate location,
f (x, y) is the function value, ‖�g‖ is the gradient length, λ1 and λ2 are the eigenvalues of the Hessian

matrix. Note that ‖�g‖ would be exactly 0 at the stationary points if calculated analytically.

Label x y f (x, y) ‖�g‖ λ1 λ2

m1 −1.431359 0.206945 −2.467838 3.246533 × 10−6 7.4497 14.3481
m2 0.404936 0.166523 −0.930778 1.703883 × 10−6 5.4577 23.8348
M1 −0.059953 1.409113 5.425638 3.490810 × 10−6 −21.6508 −11.1346
M2 1.370701 −0.008093 2.909429 2.018528 × 10−6 −14.7846 −5.7225
M3 −0.365185 −1.263316 9.276397 4.078678 × 10−6 −28.1092 −20.0956
x1 −0.364835 0.455781 1.665537 6.698525 × 10−6 −20.1040 15.5895
x2 1.148302 0.868567 1.897576 3.462192 × 10−6 −9.9574 6.7342
x3 1.154115 −0.890394 1.915014 1.581266 × 10−6 −9.2596 6.5939

While these parameter values proved best for the test problem (3), one must note
that the values of many of the parameters are strongly dependent on the problem being
solved. For example, in the case of chemical structures a mutation rate pm = 0.05, and
λtol = 0.0 was found to be better.

A scatter plot, demonstrating the evolution of the algorithm is shown in figure 2,
with each point representing an individual.

Figure 2. Scatter plot of individuals every 20 generations. Here, saddle point x3 was reported as the
optimum.
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By modifying the fitness function to seek points with zero negative eigenvalues
(replacing (n−1) by n in equation (3)), the minima of the test problem were also found.

6. Chemical structure results

Four chemical structures were optimized with the genetic algorithm. These struc-
tures, along with their starting geometries were taken from Baker and Chan [15], and are
given in table 3. The energies, first derivatives, and numerical second derivatives were

Table 3
Test cases used for transition state structure optimization (bond lengths given in
angstroms and bond angles in degrees). The starting geometries used for the optimiza-

tion are as shown in the form of a Z-matrix, and are the same as those given in [15].

1. HCN↔ HNC

C1
N2 C1 L1
H3 C2 L2 C1 A1

L1
L2
A1

1.14838
1.58536
90.0

2. HCCH↔ CCH2

C1
C2 C1 L1
X3 C1 1.0 C2 90.0
H4 C1 L2 C2 A1 X3 180.0
H5 C1 L3 X3 A2 C2 180.0

L1
L2
L3
A1
A2

1.24054
1.65694
1.06318
60.3568
60.3568

3. HOCl↔ HCl + CO

O1
C2 O1 L1
Cl3 C2 L2 O1 A1
H4 C2 L3 Cl3 A2 O1 180.0

L1
L2
L3
A1
A2

1.17
2.335
1.127
90.0
90.0

4. HNC + H2 ↔ H2CNH

H1
N2 H1 L1
C3 N2 L2 H1 A1
H4 C3 L3 N2 A2 H1 D1
H5 H4 L4 C3 A3 N2 D2

L1
L2
L3
L4
A1
A2
A3
D1
D2

1.0
1.2
1.0
1.2
120.0
150.0
90.0
170.0
10.0
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Table 4
Results obtained for the HCN↔ HNC rearrangement showing the
initial geometry and the optimized geometries from the GA and VA
methods. The Hessian has one negative eigenvalue (n) for all three
structures, but the genetic algorithm structure has a slightly lower

gradient length (‖�g‖).
Variable Initial GA VA

L1 1.14838 1.18265 1.18269
L2 1.58536 1.40780 1.40741
A1 90.0 55.0267 55.0541
Et −92.20273 −92.24604 −92.24604
‖�g‖ 7.53× 10−2 5.72 × 10−5 7.30× 10−5

n 1 1 1

Table 5
Results obtained for the HCCH ↔ CCH2 rearrangement showing
the initial geometry and the optimized geometries from the GA and
VA methods. The Hessian has one negative eigenvalue (n) for all
three structures, but the genetic algorithm structure has a slightly

lower gradient length (‖�g‖).
Variable Initial GA VA

L1 1.24054 1.24658 1.24645
L2 1.65694 1.42802 1.42920
L3 1.06318 1.05552 1.05565
A1 60.3568 54.1655 54.1117
A2 60.3568 86.6367 86.6471
Et −76.265417 −76.29343 −76.29343
‖�g‖ 2.68× 10−1 1.50 × 10−4 2.64× 10−4

n 1 1 1

calculated using an ab initio approach at the Hartree–Fock level, with the 3-21G basis
set.

These structures were optimized with a minimization of sum of squares method
(VA) [16,17], and the results are compared to those obtained from optimizing with the
genetic algorithm. Reaction 1 (see table 3) is an HCN↔ HNC rearrangement and the
results obtained are shown in table 4. The bond lengths are reported in angstroms and
the bond angles in degrees. The optimized structures obtained from both methods are
very similar and both have a Hessian matrix with one negative eigenvalue and a gradient
length on the order of 10−5. The total energy Et is reported in hartrees, and the initial
and final values match those reported in [15].

Results obtained for reaction 2 are shown in table 5. The two optimized geometries
are again very similar, both having gradient lengths on the order of 10−4. Again, the
energies match those reported by Baker and Chan.

Results obtained for reaction 3 are shown in table 6. There are only slight differ-
ences between the two optimized geometries and both converged with gradient lengths
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Table 6
Results obtained for the HOCl↔ HCl + CO reaction showing the
initial geometry and the optimized geometries from GA and VA.
The two optimized geometries are similar with comparable gradient

lengths, with the VA gradient length slightly lower.

Variable Initial GA VA

L1 1.17 1.11608 1.11607
L2 2.335 2.55176 2.55180
L3 1.127 1.10407 1.10418
A1 90.0 126.6372 126.6381
A2 90.0 47.6255 47.5872
Et −569.87865 −569.89752 −569.89752
‖�g‖ 4.58× 10−1 4.73 × 10−5 6.67× 10−5

n 1 1 1

Table 7
Results obtained for the HNC + H2 ↔ H2CNH reaction showing
the initial geometry and the optimized geometries from GA and VA.

Variable Initial GA VA

L1 1.0 1.01305 1.01184
L2 1.2 1.21603 1.21292
L3 1.0 1.11342 1.11201
L4 1.2 1.14220 1.15952
A1 120.0 117.6791 118.7790
A2 150.0 152.2407 152.7408
A3 90.0 93.1678 93.9809
D1 170.0 181.1704 180.0548
D2 10.0 −1.2450 −0.0829
E −93.30097 −93.31110 −93.31114
‖�g‖ 2.97× 10−1 5.21 × 10−4 2.55× 10−4

n 2 1 1

on the order of 10−5. All three geometries have a single negative eigenvalue, and the
energies listed agree with those in Baker and Chan.

Results obtained for reaction 4 are shown in table 7. Again, both optimized geome-
tries are similar. However, note that the initial geometry has two negative eigenvalues
but both optimized geometries have just one. The energy of the optimized structures
differ in the fifth decimal place, with the VA energy matching that reported by Baker
and Chan.

7. Advantages and disadvantages of the algorithm

Unlike other transition state optimization techniques, the genetic algorithm ap-
proach is not sensitive to the structure of the initial Hessian. The algorithm promotes the



S.D. Bungay et al. / Optimization of transition state structures using GAs 399

Table 8
CPU time (in hours, minutes and seconds) required to optimize the chemical structures
presented on a 600 MHz Pentium III. These run times do not compare to the time required
to optimize the same structures with the VA method, for which the run times were less than

5 min.

Reaction Number of variables Number of generations Time (hh.mm.ss)

HCN↔ HNC 3 100 19.04.05
HCCH↔ CCH2 5 100 30.57.33
HOCl↔ HCl + CO 5 73 88.55.04
HNC + H2↔ H2CNH 9 100 75.09.45

production of individuals with one negative eigenvalue, favouring the correct Hessian
eigenvalue structure.

Furthermore, genetic algorithms are known for their ability to efficiently sample a
search space to locate a global optimum. Although this is not the intention in the current
implementation it is worth noting that transition state structure optimization is less of a
local search than the optimization of minima; for transition states, it is very unlikely that
an initial guess can be made as close to the desired optimum as is possible for minima.

The requirement of calculating both first and second derivatives for each individual
in the population every generation leads to very long run times, especially in comparison
to traditional methods. Examples of the time required to run the algorithm for the chem-
ical structures given are shown in table 8. Despite the long run times required, it has
been shown that the genetic algorithm can be designed to find first order (or any other
order) saddle points. Future work on the algorithm will help to decrease this run time. In
particular, the elimination of a large number of derivatives is an important consideration.
In addition, parallelization of the algorithm via distribution of the fitness evaluation of
the individuals can be easily done. This would significantly decrease the run time since
the fitness evaluation is the most computationally intensive section of the code when
optimizing chemical structures.

Finally, the genetic algorithm was implemented with the idea of optimizing tran-
sition state structures that proved difficult (or impossible) to optimize with traditional
methods, as well as to allow the flexibility of providing an initial guess far removed
from the saddle point while still achieving convergence.

8. Conclusions

Some important aspects of implementing a genetic algorithm were discussed, these
included the following points. Genetic algorithms manipulate a collection of potential
solutions to a problem in parallel, rather than successively improving a single estimate
of the optimum as is done in traditional methods. The algorithm works with the en-
coded form of these potential solutions rather than the solution values themselves, and
operates on these encoded values with stochastic operators. Implementation of a genetic
algorithm is problem dependent and each piece of software is sufficiently detailed to
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restrict it to solving only the type of problems for which it was written. Such algorithms
which have been highly adapted for a specific problem, such as that discussed here, are
often more efficient at solving that problem, at the expense of generality.

The work presented here has laid the foundation for ongoing research in the area
of chemical structure optimization using genetic algorithms. Optimization of the sam-
ple problem with varying parameters demonstrated the behaviour and viability of the
method, providing a good testing medium, as well as a basis for optimizing chemical
structures. The code written was able to find all three saddle points of the function,
which illustrates the effectiveness of the fitness function used. Furthermore, the two
minima of the sample problem were also found, which demonstrates the robustness of
the genetic algorithm technique.

Applying the implementation to the optimization of chemical structures proved that
it was able to efficiently sample the regions given and effectively find a transition state
structure. Transition state structures for several chemical reactions were determined, in
agreement with results from other optimization techniques.
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